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Abstract.  
 

In semi-arid areas, agricultural production is restricted by water availability; hence efficient agricultural water 20 

management is a major issue. The design of tools providing regional estimates of evapotranspiration (ET), one 

of the most relevant water balance fluxes, may help the sustainable management of water resources.  

Remote sensing provides periodic data about actual vegetation temporal dynamics (through the Normalized 

Difference Vegetation Index NDVI) and water availability under water stress (through the land surface 

temperature LST) which are crucial factors controlling ET.  25 

In this study, spatially distributed estimates of ET (or its energy equivalent, the latent heat fluxes LE) in the 

Kairouan plain (Central Tunisia) were computed by applying the Soil Plant Atmosphere and Remote Sensing 

Evapotraspiration (SPARSE) model fed by low resolution remote sensing data (Terra and Aqua MODIS). The 

work goal was to assess the operational use of the SPARSE model and the accuracy of the modelled i) sensible 

heat flux (H) and ii) daily ET over a heterogeneous semi-arid landscape with a complex land cover (i.e. trees, 30 

winter cereals, summer vegetables). 

The SPARSE’s layer approach was run to compute instantaneous estimates of H and LE fluxes at the satellite 

overpass time. The good correspondence (R
2
= 0.60 and 0.63 and RMSE=57.89 W/m

-2
 and 53.85 W/m

-2
; for 

Terra and Aqua, respectively) between instantaneous H estimates and large aperture scintillometer (XLAS)’s H 

measurements along a pathlength of 4 km over the study area showed that the SPARSE model presents 35 

satisfactory accuracy. Results showed that, despite the fairly large scatter, the instantaneous LE can be suitably 

estimated at large scale (RMSE=47.20 W/m
-2

 and 43.20 W/m
-2

; for Terra and Aqua, respectively and R
2
= 0.55 

for both satellites). Additionally, water stress was investigated by comparing modelled (SPARSE derived) to 

observed (XLAS derived) water stress values; we found that most points were located within a 0.2 confidence 

interval, thus the general tendencies are well reproduced. . Even though extrapolation of instantaneous latent heat 40 

flux values to daily totals was less obvious, daily ET estimates are deemed acceptable. 
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1 Introduction 45 

In water scarce regions, especially arid and semi-arid areas, the sustainable use of water by resource 

conservation as well as the use of appropriate technologies to do so is a priority for agriculture (Amri et al., 

2014; Pereira et al., 2002). 

Water use rationalization is needed especially for countries actually suffering from water scarcity, or for 

countries that probably would suffer from water restrictions according to climate change scenarios. This implies 50 

that closely monitoring the water budget components is a major issue (Oki and Kanae, 2006).  

The estimation of evapotranspiration (ET) is of paramount importance since it represents the preponderant 

component of the terrestrial water balance; it is the second greatest component after precipitation (Glenn et al., 

2007); hence ET quantification is a key factor for scarce water resources management. Direct measurement of 

ET is only possible at local scale (single plot) using the eddy-covariance method for example; whereas, it is 55 

much more difficult at larger scales (irrigated perimeter or watershed) due to the complexity of hydrological 

processes (Minacapilli and Ciraolo, 2007). Moreover, at these scales, land cover is usually heterogeneous and 

this affects the land-atmosphere exchanges of heat, water and other constituents (Giorgi and Avissar, 1997). ET 

estimates for various temporal and spatial scales, from hourly to monthly to seasonal time steps, and from field 

to global scales, are required for hydrologic applications in water resource management (Anderson et al., 2011). 60 

Techniques using remote sensing (RS) information are therefore essential when dealing with processes that 

cannot be represented by point measurements only (Su, 2002). 

In fact, the contribution of RS in vegetation’s physical properties monitoring on large areas have been identified 

for years (Tucker, 1978); RS provides periodic data about some major ET drivers, amongst others, land surface 

temperature and vegetation properties (e.g. Normalized Difference Vegetation Index NDVI and Leaf Area Index 65 

LAI) from plot to regional scales (Li et al., 2009; Mauser and Schädlich, 1998). Many methods using remotely-

sensed data to estimate ET are reviewed in Courault et al.(2005).Water and energy exchange in the soil-plant-

atmosphere continuum have been simulated through several land surface models (Bastiaanssen et al., 2007; 

Feddes et al., 1978). Among them, two different approaches use remote sensing data to estimate spatially 

distributed ET (Minacapilli et al., 2009): one based on the soil water balance (SWB) and on that solves the 70 

surface energy budget (SEB). The SWB approach exploits only visible-near-infrared (VIS-NIR) observations to 

perceive the spatial variability of crop parameters. The SEB modelling approach uses visible (VIS), near-infrared 

(NIR) and thermal (TIR) data to solve the SEB equation by forcing remotely-sensed estimates of the SEB 

components (mainly the land surface temperature LST). In fact, there is a strong link between water availability 

in the soil and surface temperature under water stress, hence, in order to estimate soil moisture status as well as 75 

actual ET at relevant space and timescales, information in the TIR domain (3–15 µm) is frequently used (Boulet 

et al., 2007). The SWB approach has the advantage of high resolution and frequency VIS-NIR remote sensing 

data availability against limited availability of high resolution thermal imagery for the SEB approach. Indeed, 

satellite data such as Landsat or Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 

provide accurate field scale (30–100 m) estimates of ET (Allen et al., 2011), but they have a low temporal 80 

resolution (16 day-monthly) (Anderson et al., 2011).  

The RS-based SWB models provide estimation of ET, soil water content, and irrigation requirements in a 

continuous way. For instance, at plot scale, accurate estimates of seasonal ET and irrigation can be obtained by 
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SWB modeling using high resolution remote sensing forcing as done in the study with the SAtellite Monitoring 

of IRrigation (SAMIR) model by Saadi et al.(2015) over the Kairouan plain. However, for an appropriate 85 

estimation of ET, the SWB model requires knowledge of the water inputs (precipitation and irrigation) and an 

assessment of the extractable water from the soil (mostly derived from, say, actual water content in the root zone, 

wilting point and field capacity ), whereas, significant bias are found mainly when dealing with large areas and 

long periods, due to the spatial variability of the water inputs uncertainties as well as the inaccuracy in estimating 

other flux components such as the deep drainage (Calera et al., 2017). Hence, the major limitation of the SWB 90 

method is the high number of needed inputs whose estimations are likely uncertain especially over a 

heterogeneous land surface due to hydrologic processes complexity. Moreover, spatially distributed SWB 

models (typically those using the FAO guidelines (Allen et al., 1998) for crop ET estimation) generally 

parameterize the vegetation characteristics on the basis of land use maps (Bounoua et al., 2015; Xie et al., 2008), 

and different parameters are used for different land use classes. Nevertheless, SWB modelers generally do not 95 

have the possibility to carry out remote sensing-based land use change mapping due to time, budget, or capacity 

constraints and use often very generic classes potentially leading to modeling errors (Hunink et al., 2017). In 

addition, the lack of data about the soil properties (controlling field capacity, wilting point and the water 

retention) as well as the actual root depths for heterogeneous areas crops, lead to limited practical use of the 

SWB models (Calera et al., 2017). The same apply to the soil evaporation whose estimation generally rely on the 100 

FAO guidelines approach (Allen et al., 1998). Although, it was shown that under high evaporation conditions, 

the FAO-56 daily evaporation computed on the basis of the readily evaporable water (REW) is overestimated at 

the beginning of the dry down (Mutziger et al., 2005; Torres and Calera, 2010). Hence, to improve its estimation 

a reduction factor proposed by Torres and Calera (2010) was applied to deal with this problem in several studies 

(e.g. Odi-Lara et al., 2016; Saadi et al., 2015). Furthermore, since actual ET is computed based on actual soil 105 

moisture status, the limited knowledge of the actual farmers’ irrigation scheduling is a further critical limitation 

for SWB modeling. Therefore, SWB modelers must deal with the lack of information about real irrigation which 

induces unreliable estimations. Consequently, ET estimation at regional scale is often achieved using SEB 

approaches, by combining surface temperature from medium to low resolution (kilometer scale) remote sensing 

data with vegetation parameters and meteorological variables (Liou and Kar, 2014). Recently, many efforts have 110 

been made to feed remotely sensed surface temperature into ET modelling platforms in combination with other 

critical variables, e.g., NDVI and albedo (Kalma et al., 2008; Kustas and Anderson, 2009). A wide range of 

satellite-based ET models were developed, and these methods are reviewed in Liou and Kar (2014). The 

majority of SEB-based models are “single-source models”; their algorithms compute a total latent heat flux as 

the sum of the evaporation and the transpiration components using a remotely sensed surface temperature. 115 

However, separate estimates of evaporation and transpiration makes the “dual-source models” more useful for 

agrohydrological applications (water stress detection, irrigation monitoring etc.) (Boulet et al., 2015).  

Contrarily to SWB models, most SEB models are run in their most standardized version, using observed remote 

sensing-based parameters such as albedo in conjunction with a set of input parameters taken from literature or in 

situ data. On the other hand, the SEB model validation with enough data in space and time is difficult to achieve, 120 

due to the limited availability of high resolution thermal images (Chirouze et al., 2014). Therefore, it is usually 

possible to evaluate SEB models results only at similar scale (km) to medium or low resolution images. Indeed, 

the pixel size of thermal remote sensing images, except for the scarce Landsat7 images (60 m), covers a range of 
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1000 m (Moderate Sensors Resolution Imaging Spectroradiometer MODIS), to the order of 4000 m 

(Geostationary Operational Environmental Satellite GOES). However, direct methods measuring sensible heat 125 

fluxes (eddy covariance EC for example) only provide point measurements with a footprint considerably smaller 

than a satellite pixel (except for Landsat). Therefore, scintillometry techniques have emerged as one of the best 

tools aiming to quantify averaged fluxes over heterogeneous land surfaces (Brunsell et al., 2011). They provide 

average sensible heat estimates over areas comparable to those observed by satellites (Hemakumara et al., 2003; 

Lagouarde et al., 2002b). Scintillometry can provide sensible heat using different wavelengths, aperture sizes 130 

and configurations (Meijninger et al., 2002). The upwind area contributing the flux (i.e. the flux footprint) varies 

as wind direction and atmospheric stability , and must be estimated for the surface measurements in order to 

compare them to SEB estimates of the flux which are representative of the pixel (Brunsell et al., 2011). 

Assessing the upwind area contributing to the flux can be done using several footprint models (Schmid, 2002). 

The LAS technique has been validated over heterogeneous landscapes against EC measurements (Bai et al., 135 

2009; Chehbouni et al., 2000; Ezzahar et al., 2009) and also against modelled fluxes (Marx et al., 2008; Samain 

et al., 2012; Watts et al., 2000). Few studies dealt with extra large aperture scintillometer (XLAS) data (Kohsiek 

et al., 2006; Kohsiek et al., 2002; Moene et al., 2006). Historical survey, theoretical background as well as recent 

works in applied research concerning scintillometry are reviewed in De Bruin and Wang (2017). Since the 

scintillometer only provides spatially averaged sensible heat flux (H_XLAS), the latent heat flux (LE_XLAS) 140 

can then be computed as the energy balance residual term (LE_XLAS =Rn-G-H_XLAS), hence, the estimation 

of a representative value for the available energy (AE =Rn-G) is always crucial for the accuracy of the retrieved 

values of LE_XLAS.  

In this study, spatially distributed estimates of surface energy fluxes (sensible heat H and latent heat fluxes LE) 

over an irrigated area located in the Kairouan plain (Central Tunisia) were obtained by the SEB method, using 145 

the “layer” approach (a resistance network that relates the soil and vegetation heat sources to a main reference 

level using a series electrical branching) of the Soil Plant Atmosphere and Remote Sensing Evapotraspiration 

(SPARSE) model (Boulet et al., 2015) fed by 1-km thermal data and 1-km NDVI data from MODIS sensors on 

Terra and Aqua satellites. 

The main objective of this paper is to compare H and LE obtained using the SPARSE model and XLAS 150 

measurements acquired during two years over a large, heterogeneous area. We explore the consistency between 

the instantaneous H and LE estimates at the satellite overpass time, the water stress estimates and also ET 

derived at daily time step from both approaches. 

2 Experimental site and datasets 

2.1 Study area 155 

The study site is a semi-arid region located in central Tunisia, the Kairouan plain (9°23ʹ−10°17ʹE, 

35°1ʹ−35°55ʹN, (Figure 1). The landscape is mainly flat, and the vegetation is dominated by agricultural 

production (cereals, olive groves, fruit trees, market gardens, Zribi et al., 2011). Water management in the study 

area is typical of semi-arid regions with an upstream sub-catchment that transfers surface and subsurface flows 

collected by a dam (the El Haouareb dam), and a downstream plain (Kairouan plain) supporting irrigated 160 

agriculture (Figure 1). Agriculture consumes more than 80% of the total amount of water extracted each year 
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from the Kairouan aquifer (Poussin et al., 2008). Most farmers in the plain uses their own wells to extract water 

for irrigation (Pradeleix et al., 2015), while a few depends on public irrigation schemes based on collective 

networks of water distribution pipelines all linked to a main borehole. The crop intensification in the last 

decades, associated to increasing irrigation, has led to growing water demand, and an overexploitation of the 165 

groundwater (Leduc et al., 2004). 

 
Figure 1 : The study area: the downstream Merguellil sub-basin is the so called Kairouan plain; MODIS grid is the 

extracted 10 km× 8 km MODIS sub-image  

2.2 Experimental Setup  170 

An optical Kipp and Zonen Extra Large Aperture Scintillometer (XLAS) was operated continuously for more 

than two years (1 March 2013 to 3 June 2015) over a relatively flat terrain. The scintillometer consists in a 

double device, with a transmitter and a receiver both with an aperture diameter of 0.3 m. The wavelength of the 

light beam emitted by the transmitter is 940 nm. The transmitter was located on the eastern water tower 

(coordinates: 35° 34' 0.7" N; 9° 53' 25.19" E) and the receiver on the western water tower (coordinates: 35° 34' 175 

17.22" N; 9° 56' 7.30"E) separated by a path length of 4 km (Figure 2). Both instruments were installed at 20 m 

height. The scintillometer transect was above mixed vegetation canopy: trees (mainly olive orchards) with some 

annual crops (cereals and market gardening).  

Furthermore, two similar eddy covariance (EC) systems were also positioned at the same level on the two water 

tower top platforms. Half hourly sensible heat flux, wind speed components and wind direction were measured 180 

used a sonic anemometer CSAT 3D at a rate of 20 Hz and a sonic anemometer RM81000 at a rate of 10 Hz, 

respectively. These EC set-ups (friction velocity u* and wind direction measurements) were used to compute 

scintillometer derived fluxes as well as footprints. Half hourly standard meteorological measurements including 
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global incoming radiation, wind speed, air temperature and humidity, rainfall were recorded using an automated 

weather station installed in the study area (Figure 2). Hereafter, this weather station is referred as the Ben Salem 185 

meteorological station (35° 33' 1.44" N; 9° 55' 18.11"E).  

In addition, a flux station based on the eddy correlation method, referred as the Ben Salem flux station (few tens 

of meters away from the meteorological station) was installed from November 2012 to June 2013 in an irrigated 

wheat field. This station measuring continuously LE was used to perform the extrapolation of instantaneous 

energy balance components at daily time scale. 190 

 
Figure 2 : XLAS Set-up (XLAS transect (white), emitter and receiver locations and half-hourly footprint in typical 

wind conditions (green), MODIS grid (black), trees plots (blue) and the location of the meteorological and the wheat 

field flux station. This figure illustrates three colour (red, green, blue) composite of SPOT5 bands 3, 2 and 1.  

 195 

3 Extra Large aperture scintillometer: data processing 

3.1 Scintillometer derived fluxes 

Scintillometer is based on the scintillation method. Fluxes of sensible heat and momentum cause atmospheric 

turbulence close to the ground, and creates, with surface evaporation, refractive index fluctuations due mainly to 

air temperature and humidity fluctuations (Hill et al., 1980). The fluctuations intensity is directly linked to 200 

sensible and latent heat fluxes. 

The light beam emitted by the XLAS transmitter towards the receiver is dispersed by the atmospheric turbulence. 

The scintillations representing the intensity fluctuations are analyzed at the XLAS receiver and are expressed as 

the structure parameter of the refractive index of air integrated along the optical path     [m-2/3
] (Lagouarde et 

al., 2002a; Wang et al., 1978). The sensitivity of the scintillometer to     along the bean is not uniform and 205 

follows a bell-shape curve. As transmitter and receiver apertures are equal, the curve is symmetrical. As a result 

the scintillometer is more sensitive to turbulences, hence to fluxes, in the middle of its path.  

In order to compute the XLAS sensible heat flux , Cn
2
 was converted to the structure parameter of temperature 

CT
2
 [K

2
 m

−2/3
] by introducing the Bowen ratio (ratio between sensible and latent heat fluxes), hereafter referred to 
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as β, which is a temperature /humidity correlation factor. Moreover, the height of scintillometer beam above the 210 

surface varies along the path. Consequently, Cn
2
 and therefore CT

2
 are not only averaged horizontally but 

vertically as well. 

At visible wavelengths, the refractive index is more sensitive to temperature than humidity fluctuations Then, we 

can relate the Cn² to CT² :  

      
            

   

 

      
    

 
 
 

  (1) 

with T is the air temperature (°K) and P is the atmospheric pressure (Pa).  215 

Green and Hayashi(1998) proposed another method to compute the sensible heat flux (H) assuming full energy 

budget closure and using an iterative process without the need of the Bowen ratio as an input parameter. This 

method is called the “β-closure method” (BCM, Solignac et al., 2009;Twine et al., 2000). Then, the similarity 

relationship proposed by (Andreas, 1988) is used to relate the CT² to the temperature scale T* in unstable 

atmospheric conditions: 220 

            
 
 

  
              

      

  
 
 
 
 
   (2) 

and for stable atmospheric conditions: 

            
 
 

  
              

      

  
 

 
 
    (3) 

where LO (m) is the Obukhov length , ZLAS (m) is the scintillometer effective height, and d (m) is the 

displacement height, which corresponds to 2/3 of the averaged vegetation height zv (see Sect. 4.1). 

From T* and the friction velocity, u* , the sensible heat flux can be derived as follows: 

            (4) 

where ρ (kg m
−3

) is the density of air and cp (J Kg
-1

 K
-1

) is the specific heat of air at constant pressure. 225 

XLAS sensible heat flux (H_XLAS) was computed at a half hourly time step. Negative night-time data were set to 

zero and daytime flux missing data (one to three 30mn- data) were gap filled using simple interpolation. Flux 

anomalies in early morning (circa sunrise) and late afternoon (circa sunset) were corrected on the basis of the 

ratio between sensible heat flux and half hourly incoming solar radiation measurements (Rg) using Ben Salem 

meteo station. Furthermore, aberrant values of XLAS sensible heat flux were ruled out. 230 

3.2 XLAS footprint computation 

The footprint of a flux measurement defines the spatial context of the measurement and the source area that 

influences the sensors. In case of inhomogeneous surfaces like patches of various land covers and moisture 

variability due to irrigation, the measured signal is dependent on the fraction of the surface having the strongest 

influence on the sensor and thus on the footprint size and location. Footprint models (Horst and Weil, 1992; 235 

Leclerc and Thurtell, 1990) have been developed to determine what area is contributing the heat fluxes to the 

sensors as well as the relative weight of each particular cell inside the footprint limits. Contributions of upwind 

locations to the measured flux depend on the height of the vegetation, height of the instrumentation, wind speed, 

wind direction, and atmospheric stability conditions (Chávez et al., 2005).  

According to the model of (Horst and Weil, 1992), for one-point measurement system, the footprint function f 240 

relates the spatial distribution of surface fluxes, F0(x,y) to the measured flux at height zm, F(x,y,zm), as follows: 
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  (5) 

The footprint function f is computed as: 

          
   

  

  
   

      

       
              (6) 

Where       is the mean wind speed profile and    is the mean plume height for diffusion from a surface source. 

The variables A, b and c are scale factors and r a scale factor of the Gamma function. In the case of a 

scintillometer measurement, the footprint function has to be combined with the spatial weighting function W(x) 245 

of the scintillometer to account for the sensor integration along its path. Thus, the sensible heat flux footprint 

mainly depends on the scintillometer effective height zLAS (Hartogensis et al., 2003), which includes the 

topography below the path and the transmitter and receiver heights, the wind direction and the Obukhov length 

LO, which characterizes the atmospheric stability (Solignac et al., 2009).  

In a subsequent step, daily footprints were computed based on the half hourly footprints. 250 

3.3 XLAS derived latent heat flux  

Instantaneous (LE_residual_XLASt-FP) and daily (LE_residual_XLASday-FP) XLAS derived latent heat flux (i.e 

residual latent heat flux) of the XLAS upwind area were computed using the energy budget closure of the XLAS 

measured sensible heat flux (H_XLAS) with additional estimations of net surface radiation Rn combined with 

soil heat flux G, as available energy (AE=Rn-G), as follows: 255 

                                    (7) 

                                           (8) 

H_XLASt is the scintillometer sensible heat flux at the time of the satellite overpass interpolated from the half 

hourly fluxes measurements. Daily H (H_XLASday) was computed as the average of the half hourly XLAS-

measured H. Daily available energy (AEday-FP) was computed from instantaneous available energy (AEt-FP) as 

detailed in Sect. 3.3.1 and Sect. 3.3.2.  

3.3.1 Instantaneous available energy 260 

Net surface radiation is the balance of energy between incoming and outgoing shortwave and longwave radiation 

fluxes at the land-atmosphere interface. Remote sensed surface radiative budget components provide 

unparalleled spatial and temporal information, thus several studies have attempted to estimate net radiation by 

combining remote sensing observations with surface and atmospheric data. Net radiation equation can be written 

as follows: 265 

                                  (9) 

where Rg is the incoming shortwave radiation (W.m
-2

), Ratm is the incoming longwave radiation (W.m
-2

), ɛs is 

surface emissivity, σ is Stefan-Boltzmann coefficient (W.m
-2

.K
4
) , α is albedo, and LST is land-surface 

temperature (°K). 

The soil heat flux G depends on the soil type and water content as well as the vegetation type (Allen et al., 

2005).The direct estimation of G by remote sensing data is not possible (Allen et al., 2011), however, empirical 270 

relations could estimate the fraction G/Rn as a function of soil and vegetation characteristics using satellite 

image data, such as the LAI, NDVI, α and LST. In order to estimate the G/Rn ratio, several methods have been 
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tested for various types of surfaces at different locations (Bastiaanssen, 1995; Burba et al., 1999; Choudhury et 

al., 1987; Jackson et al., 1987; Kustas and Daughtry, 1990; Kustas et al., 1993; Ma et al., 2002; Payero et al., 

2001). 275 

Danelichen et al.(2014) evaluated the parameterization of these different models in three sites in Mato Grosso 

state in Brazil and found that the model proposed by Bastiaanssen (2005) showed the best performance for all 

sites, followed by the model from Choudhury et al. (1987) and Jackson et al. (1987). Hence to estimate G, we 

tested three methods: 

Bastiaanssen (2005) : 280 

                                                  (10) 

Choudhury et al. (1987): 

                         (11) 

Jackson et al. (1987) 

                              (12) 

Remote sensing variables α, LST, ɛs, LAI and NDVI were calculated at the resolution of the sensor (MODIS, 1 

km resolution). The Ben Salem meteo station was used to provide Rg and Ratm. MODIS Available Energy AEt 

was computed for a 10 km × 8 km sub-image centered on the XLAS transect at Terra-MODIS and Aqua-MODIS 285 

overpass time, using the three methods estimating G. Since, the measured heat fluxes H_XLASt represents only 

the weighted contribution of the fluxes from the upwind area to the tower (footprint) then instantaneous footprint 

at the time of Terra and Aqua overpass were selected among the two half hour preceding and following the 

satellite’s time of overpass (lowest time interval) and then was multiplied by AEt to get the available energy of 

the upwind area AEt-FP.  290 

3.3.2 Daily available energy 

Most methods using TIR domain data rely on once-a-day acquisitions, late morning (such as Terra-MODIS 

overpass time) or early afternoon (such as Aqua-MODIS overpass time). Thus, they provide a single 

instantaneous estimate of energy budget components, since the diurnal cycle of the energy budget is not 

recorded. In order to obtain daily AE from these instantaneous measurements (Eq. (13) and Eq. (14)) and to 295 

reconstruct hourly variations of AE, we considered that its evolution was proportional to another variable whose 

diurnal evolution can be easily known. Here the global solar incoming radiation Rg was used to scale AE from 

instantaneous to daily values as follows: 

          
             

        

   
         (13) 

         
            

       

   
       

 

 (14) 

where Rgt and Rgday are respectively the instantaneous and daily global incoming solar radiation. 

A bias was found when assuming aTerra=aAqua=1 and bTerra=bAqua=0; hence basing on the Ben Salem flux station 300 

Rn and G measurements, corrected parameterizations of AE (a and b) were computed and used to remove this 

bias (see Sect. 6.1). Consequently, daily available energy was computed for the 10 km × 8 km sub-image at the 

time of Terra-MODIS (          
  and Aqua-MODIS (         

  overpass, and then was weighted by the 

corresponding daily footprint to get the daily available energy of the upwind area AEday-FP.  
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Finally, estimates of Terra-MODIS and Aqua-MODIS observed daily LE were obtained based on the three 305 

methods used to compute the soil heat flux G. 

4 SPARSE model 

4.1 Energy fluxes derived from SPARSE model 

The SPARSE model solves the energy budgets of the soil and the vegetation. Main unknowns are the component 

temperatures, i.e. the temperature of the soil (Ts) and that of the vegetation (Tv). Totals at the reference height, as 310 

well as the longwave radiation budget, are also solved so that altogether a system of five equations can be built: 

 
 
 

 
 

       

          

            

          

     
              

   (15) 

Ratm is the atmospheric radiation (W/m
-2

), Ra is the net component longwave radiation (W/m
-2

) and Trad is the 

radiative surface temperature (°K) as observed by the satellite; indexes “s” and “v” designate the soil and the 

vegetation, respectively. 

The first two (Eq. (15)) express the continuity of the latent and sensible heat fluxes from the sources to the 315 

aerodynamic level through to the reference level, the third and the fourth (Eq. (15)) are the soil and vegetation 

energy budgets, and the fifth (Eq. (15)) relates the radiative surface temperature Trad to Ts and Tv. 

The SPARSE model system of equations is fully described in Boulet et al.(2015). SPARSE is similar to the 

TSEB model (Kustas and Norman, 1999) but includes classical expressions of the aerodynamic resistances 

(Choudhury and Monteith, 1988;Shuttleworth and Gurney, 1990) . 320 

System (15) is solved iteratively by following similar guidelines as in the TSEB model: the first step assumes 

that the vegetation transpiration is maximum, and evaporation is computed. If this soil latent heat flux (LEs) is 

negative, the hypothesis that the vegetation is unstressed is no longer valid. In that case, the vegetation is 

assumed to suffer from water stress and the soil surface is assumed to be already long dry. Then, LEs is set to a 

minimum value of 30 W.m
-2

 so that one accounts for the small but non neglectable vapor flow reaching the 325 

surface (Boulet et al., 1997). The system is then solved for vegetation latent heat flux (LEv). If LEv is also 

negative, both LEs and LEv values are set to zero, whatever the value of Trad. The system of equation can also be 

solved for Ts and Tv only if the efficiencies representing stress levels (dependent on surface soil moisture for the 

evaporation, and root zone soil moisture for the transpiration) are known. In that case the sole first four equations 

are solved. This prescribed mode allows computing all the fluxes in known limiting soil moisture levels (very 330 

dry, e.g. fully stressed, and wet enough, e.g. potential). It limits unrealistically high values of component fluxes, 

latent heat flux values above the potential rates or sensible heat flux values above that of a non evaporating 

surface.  

Some of the model parameters were remotely sensed data while others were taken from the bibliography or 

measured in situ.  335 

Remotely sensed data fed into SPARSE are: land surface temperature (LST), surface emissivity (ε) and viewing 

angle (ϕ) (MOD11A1/ MYD11A1 for Terra and Aqua, respectively), NDVI (MOD13A2/MYD13A2 for Terra 

and Aqua, respectively) and albedo (α) (MCD43B1, MCD43B2, MCD43B3). These data were acquired for the 
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study period (1
st
 September 2012 to 30

th
 June 2015) at the resolution of the MODIS sensor at 1 km, embarked on 

board of the satellites Terra (overpass time around 10:30 local solar time) and Aqua (overpass time around 13:30 340 

local solar time).  

MODIS data provided in sinusoidal projection was reprojected in UTM using the MODIS Reprojection Tool 

(MRT). Then the sub-images of 10 km× 8 km over the study zone (Figure 1) were extracted. Since the MODIS 

pixels in our study area are considered to include the same land use (mainly arboriculture with some annual 

crops), the footprint of the MODIS pixel resulting from the variation in the size of the ground area that is 345 

detected (variation in the view zenith angles) as well as to the MODIS gridding process (Peng et al., 2015) were 

not reconstructed. The daily MODIS LST and viewing angle, 8-day MODIS albedo, and 16-day MODIS NDVI 

contain some missing or unreliable data; hence, days with missing data in MODIS pixels regarding the 

scintillometer footprint were excluded. Temporal interpolation of albedo and NDVI data were done to get daily 

remote sensing data. 350 

A single equation (Clevers, 1989) was used to compute remotely sensed leaf area index (LAI) from the NDVI of 

all crops in the study area: 

     
 

 
   

          

              
    (16) 

The calibration of this relationship was done over the Yaqui irrigated perimeter (Mexico) during the 2007-2008 

growing season using hemispherical LAI measured in all the studied fields (Chirouze et al., 2014). Calibration 

results gave the asymptotical values of NDVI, NDVI∞ = 0.97 and NDVIsoil = 0.05, as well as the extinction factor 355 

k1.13. As this relationship was calibrated over a heterogeneous land surface but on herbaceous vegetation only, 

its relevance for trees was checked. For that purpose, clump-LAI measurements on an olive tree, as well as 

allometric measurements (mean distance between trees and mean crown size done using Pleiades satellite data 

(Mougenot et al., 2014;Touhami, 2013)) were obtained. We checked that the pixels with tree dominant cover 

show LAI values close to what was expected (of the order of 0.3 to 0.4 given the interrow distance of 12 m on 360 

average).  

A grid of the vegetation height (zv) was also necessary as input in the SPARSE model; for herbaceous crops, 

vegetation height was interpolated with the help of NDVI time series between fixed minimum (0.05 m) and 

maximum (0.8 m) values, while for trees, the roughness length (zom) was linked to the allometric measurements 

(mentioned before) and computed as a function of canopy area index, drag coefficient and canopy height using 365 

the drag partition approach proposed by (Raupach, 1994) for tall sparse vegetative environments. Then, since 

SPARSE deals with vegetation height and not roughness length, the same simple rule of the thumb as the one 

used in SPARSE was used to reconstruct zv for the tree cover types (zv=zom/0.13). In a final step, to get spatial 

vegetation height, zv was averaged over the MODIS pixels.  

In situ parameters used in SPARSE were mainly meteorological data: incoming solar radiation (Rg), incoming 370 

atmospheric radiation (Ratm), air temperature (Ta), air humidity (Ha) and wind speed (u).  

No calibration was performed on the model parameters shown in Table 1. 

 

 

 375 
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Table 1. SPARSE parameters  

 Definition Value Data Sources 

 

Remote sensing parameters 
  

NDVI Normalized Difference Vegetation Index  Satellite imagery 

Trad (K) Radiative surface temperature (K)  Satellite imagery 

α Albedo   Satellite imagery 

ε Emissivity   Satellite imagery 

Φ (rad)  View zenith angle   Satellite imagery 

 

Meteorological parameters  
  

Rg (W.m
−2

) Incoming solar radiation   In situ data 

Ratm (W.m
−2

) Incoming atmospheric radiation  In situ data 

Ta (K) Air temperature at reference level   In situ data 

RHa (%) Air relative humidity  In situ data 

ua (m.s
-1

) Horizontal wind speed at reference level  In situ data 

 

Fixed parameters 
  

za (m) Atmospheric forcing height  2.32 In situ data 

zv (m) Vegetation height  
Derived from land 

cover 

βpot  Evapotranspiration efficiency in full potential conditions 1.000  

βstress Evapotranspiration efficiency in fully stressed conditions 0.001  

rstmin (s.m
-1

) Minimum stomatal resistance 100 
Bibliography  

(Boulet et al., 2015)  

w (m) Leaf width  0.05 
Bibliography  

(Braud et al., 1995)  

εv Vegetation emissivity 0.98 
Bibliography  

(Braud et al., 1995)  

αv Vegetation albedo 0.25 Estimation  

 

Constants  
  

ρcp 

(J.kg
−1

.K
−1

) 
Product of air density and specific heat 1170 

Bibliography  

(Braud et al., 1995) 

σ (W. m
-2

.k
4
) Stefan–Boltzmann constant 5.66. 10

-8
 

Bibliography  

(Braud et al., 1995) 

γ (Pa.K
−1

) Psychrometric constant  0.66 
Bibliography  

(Braud et al., 1995) 

zom,s(m) 
Equivalent roughness length of the underlying bare soil in 

the absence of vegetation  
5.10

-3
 

Bibliography  

(Braud et al., 1995) 

nSW 
Coefficient in rav (Aerodynamic resistance between the 

vegetation and the aerodynamic level)  
2.5 

Bibliography  

(Boulet et al., 2015) 

ξ 
Ratio between soil heat flux G and available net radiation 

on the bare soil Rns 
0.4 

Bibliography  

(Braud et al., 1995) 

SPARSE was run for the 10 km × 8 km sub-image at the time of Terra-MODIS and Aqua-MODIS overpass. 

Then, instantaneous modelled fluxes were multiplied by the nearest half hourly footprint to the satellite overpass 380 

time, in order to get fluxes corresponding to the upwind area (H_SPARSEt-FP, LE_SPARSEt-FP and 

AE_SPARSEt-FP). In a subsequent step, SPARSE model was run at a half hourly time step using the half hourly 

meteorological measurements and assuming that the remote-sensed MODIS data are invariant during the same 

day. 
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4.2 Reconstruction of daily modelled ET from instantaneous latent heat flux 385 

Daily ET is usually required for applications in hydrology or agronomy for instance, whereas most SEB methods 

provide a single instantaneous latent heat flux because the energy budget is only computed at the satellite 

overpass time (Delogu et al., 2012). In order to scale daily ET from one instantaneous measurement, various 

methods relying on the preservation, during the day, of the ratio of the latent heat flux to a scale factor having 

known diurnal evolution, have been developed. The global solar incoming radiation Rg, the net radiation Rn, the 390 

available energy or a maximum ET rate are generally used as scale factors. Chávez et al. (2008) , Colaizzi et al. 

(2005) and Van Niel et al. (2011) tested several extrapolation methods to estimate daily ET. The most common 

methods use as scaling factors the available energy or the potential ET. The first method assumes a constant 

diurnal evaporative fraction (EF) which is defined as the ratio of the latent heat flux (LE) to the available energy 

(Rn-G) at the land surface (Eq. (17)). The second one assumes a constant stress factor (SF) which is defined as 395 

the complementary part to 1 of the ratio between the simulated (actual conditions) and the potential (theoretical 

value for an unstressed surface i.e. potential ET) latent heat fluxes (LEpot (Eq. (18)). Potential ET is usually 

computed using a reference calculation such as the FAO-56 (Allen et al., 1998) method or derived from a surface 

energy balance model (e.g. Lhommel, 1997)  

   
  

    
  (17) 

      
  

     
    (18) 

Besides, daily ET can also be estimated using the residual method, after computing the daily H, Rn and G (same 400 

approach as for the XLAS derived LE detailed in Sect. 3.3).  

All daily ET estimates were done for the 10 km × 8 km sub-image (              and then were weighted by 

the corresponding daily footprint to get the daily ET of the upwind area (                .  

4.2.1 Evaporative Fraction method 

Under clear sky days, EF self preservation was revised by several studies. Hoedjes et al. (2008) showed that EF 405 

is almost constant during daytime under dry conditions whereas it follows a concave-up shape under wet 

conditions. Hence, EF depends strongly on soil moisture as well as canopy fraction cover, but, it is nearly 

unrelated to solar radiation and wind speed, as shown by Gentine et al. (2007). 

Consequently, the daily ET total (i.e. LE_SPARSEday) can be expressed as the product of the instantaneous 

estimate of EF at the satellite overpass time and the daily available energy AE_SPARSEday : 410 

                             (19) 

Daily cumulative available energy AE_SPARSEday was computed from instantaneous available energy 

(AE_SPARSEt) at the two satellite overpass times using the same approach detailed in Sect. 3.3.2 (Eq. (13) and 

Eq. (14)). Instantaneous estimates of Rn and G with the SPARSE model were used. 

4.2.2 Stress Factor (SF) method 

Assuming that the stress factor (SF) is constant during the day, the daily ET (LE_SPARSEday) can be expressed 415 

as the product of the instantaneous estimate of SF at the satellite overpass time and the daily potential 

evapotranspiration LEpotday : 

                             (20) 
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LEpotday was calculated as the sum of the half hourly modelled latent heat fluxes at potential conditions. The SF 

method is more complex than the EF method since inputs for the SF method have to be computed from a 

potential evapotranspiration model while inputs used for EF method can be derived from remote sensing.  420 

4.2.3 Residual method 

 Daily modelled latent heat flux (LE_residual_SPARSEday) was estimated as a residual term of the surface 

energy budget using daily modelled sensible heat flux (H_SPARSEday) and available energy (AE_SPARSEday) 

totals as shown in Eq. (21).  

                                               (21) 

H_SPARSEday was computed from modelled instantaneous H (H_SPARSEt) following the same extrapolation 425 

method used for the available energy (see Sect. 3.3.2): 

               
              

             

   
          

 (22) 

                
             

              

   
          (23) 

where Rgt and Rgday are respectively the instantaneous and daily global incoming solar radiation.  

5 Water stress estimates 

Water stress estimation is crucial to deduct the root zone soil moisture level using remote sensing data, (Hain et 

al., 2009). Water stress results in a drop of actual evaporation below the potential rate. Its intensity is usually 430 

represented by a stress factor (SF) as defined in Sect. 4.2, ranging between 0 (unstressed surface) and 1 (fully 

stressed surface).  

Values of SF at the time of Terra and Aqua overpass (SFmod) have been computed from potential LE generated 

with the SPARSE model in prescribed conditions (βs = βv = 1). It is thus possible to relate SFmod to a 

combination of radiative temperatures as follows: 435 

         
  

     
  

             

                  
    (24)  

where LE and LEpot are the simulated latent heat fluxes in actual and potential conditions, respectively, and 

Tradstress and Tradpot are simulated radiative temperature in actual and potential conditions, respectively; and LST 

is the MODIS land surface temperature.  

Furthermore, surface water stress factor derived from XLAS measurement, named SFobs, at the time of Terra and 

Aqua overpass was computed as follows (Su, 2002):  440 

       
            

            
   (25) 

where Hstress and Hpot are the simulated sensible heat flux in actual and potential conditions, respectively; and 

H_XLASt is the XLAS sensible heat flux at the satellite overpass time. 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-454
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 28 August 2017
c© Author(s) 2017. CC BY 4.0 License.



15 

 

6 Results and discussion 

6.1 Reconstruction of daily available energy and sensible heat flux 

For the sake of validation, daily AE computed from half hourly in situ data measured in the Ben Salem flux 445 

station (from November 2012 to June 2013) were compared to daily AEday estimated from instantaneous AEt 

using the scaling method based on Rg at both Terra-MODIS and Aqua-MODIS time overpass (see Sect. 3.3.2).  

This comparison was achieved only for clear sky days for which MODIS images can be acquired and remote 

sensing data used to compute AE are available. In order to select clear sky days, the ratio of the incoming solar 

radiation Rg to the theoretical clear sky radiation Rso as proposed by the FAO-56 method (Allen et al., 1998) 450 

was computed. A day was defined as clear if the measured Rg is higher than 85 % of the theoretical clear sky 

radiation at the satellite overpass time (Delogu et al., 2012).  

An overestimation of about 15% is found between measured and estimated daily available energy (Figure 3); and 

the coefficients aTerra, b Terra, aAqua and bAqua (Table 2) were applied to remove this bias. 

 455 

Figure 3: Comparison of daily AE observed at Ben Salem flux station (2012-2013) and daily AE estimated using the 

scaling method based on Rg. 

Using the same approach, figure 4 shows the comparison of daily H observed at Ben Salem flux station (2012-

2013) and daily H estimated using the scaling method based on Rg. The coefficients a’Terra, b’ Terra, a’Aqua and 

b’Aqua (Table 2) were applied to remove the bias between measured and estimated daily H. 460 
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Figure 4: Comparison of daily H observed at Ben Salem flux station (2012-2013) and daily H estimated using the 

scaling method based on Rg. 

Table 2: Corrected parameterizations of AE and H 

Available energy (AE) Terra aTerra 0.85 

bTerra -19.81 

Aqua aAqua  0.87 

bAqua -18.94 

Sensible heat flux (H) Terra a’Terra 1.02 

b’ Terra -17.31 

Aqua a’Aqua  1.00 

b’Aqua -14.83 

 465 

6.2 XLAS and model derived instantaneous sensible heat fluxes  

Our primary focus is the comparison between scintillometer measurements and the modelled sensible heat fluxes 

computed using the Terra and Aqua remotely sensed data. The scintillometer H at the time of the two satellites 

overpass (H_XLASt) are interpolated from the half hourly H measurements and are shown in figure 5. Heat flux 

determination was possible for typically about 87% of the daytime measurements during the summer, 470 

availability of XLAS heat flux values was less during the cold season due to poor visibility and/or stable 

stratification. 
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Figure 5: Time series of XLAS measured sensible heat flux (H) at the time of Terra and Aqua overpass  

By convolving the XLAS footprint with the SPARSE derived H, we were able to compare the modelled values 475 

(H_SPARSEt-FP) with the XLAS measurements (H_XLASt). Therefore, due to XLAS and remote sensing data 

availability, we got 175 dots and 118 dots for Terra and Aqua respectively. As example, we present this 

comparison for two days of special interest, DOY 2013-083 and DOY 2014-185 (Figure 6). The colored area 

shows the modelled flux and the contours shows the surface source area contributing to 95% of the scintillometer 

measurements. The DOY 2013-083 corresponds to a large footprint with a south wind while the DOY 2014-185 480 

corresponds to smaller upwind area with a north wind. Generally, a little number of MODIS pixels brings a high 

contribution to the signal; among them two are hot pixels in which the land use is mainly arboriculture.  

Prediction performance is assessed using two widely-used indicators: the root-mean-square error (RMSE) and 

the coefficient of determination (R
2
). Results for the sensible heat flux are illustrated in figure 7 and show good 

agreement between modelled and measured H at the time of satellites overpass. This is illustrated by linear 485 

regressions of H_SPARSEt-FP = 1.065 H_XLASt -14.788 (R
2
 = 0.6; RMSE = 57.89 W.m

−2
) and    

H_SPARSEt-FP = 1.12 H_XLASt -10.57 (R
2
 = 0.63; RMSE = 53.85 W.m

−2
) for Terra and Aqua, respectively. 

This result is of great interest considering that the SPARSE model was run with no prior calibration. Whereas 

there are several studies dealing with large aperture scintillometer (LAS) data whose measurements are 

compared to modelled fluxes, in the few studies dealing with extra large aperture scintillometer (XLAS) data, the 490 

comparison is generally done with Eddy Covariance station measurements (Kohsiek et al., 2002; Moene et al., 

2006). Indeed, our results are in agreement with those found by Marx et al.(2008) who compared LAS-derived 

and satellite-derived H (SEBAL was applied with NOAA-AVHRR images providing maps of surface energy 

fluxes at a 1 km × 1 km spatial resolution), and found that modelled H is underestimated with a RMSE of 

39 W.m
−2

 for the site Tamale and 104 W.m
−2

 for the site Ejura. Moreover, Watts et al.(2000) compared the 495 

satellite (AVHRR radiometer) estimates of H to those from LAS over a semi-arid grassland in northwest Mexico 

during the summer of 1997. They found RMSE values of 31 W.m
−2

 and 43 W.m
−2

 for LAS path lengths of 

300 m and 600 m respectively and showed that LAS measurements are less good than those derived from a 3D 

sonic anemometer. They also suggested longer LAS path length (greater than 1.1 km) since the LAS is rather 

insensitive to the surface near the receiver and emitter. 500 
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a) 

 

b) 

 

Figure 6: Model derived sensible heat fluxes and footprints for (a) DOY 2013-083 at Aqua time overpass and (b) DOY 

2014-185 at Terra time overpass 

 

Figure 7: Modelled vs. observed sensible heat fluxes at Terra and Aqua time overpass 505 
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6.3 XLAS and model derived instantaneous latent heat fluxes  

In a subsequent step, SPARSE derived LE (LE_SPARSEt-FP) was compared to observed LE 

(LE_residual_XLASt-FP). Results are illustrated in figure 8 showing a good agreement between modelled and 

observed LE. However, these results are less good than for the H results, as shown by the linear regressions: 

LE_SPARSEt-FP =0.94 LE_residual_XLASt-FP + 12.47 (RMSE = 47.20 W.m
-2

) and                 510 

LE_SPARSEt-FP = 0.85 LE_residual_XLASt-FP +11.51 (RMSE = 43.20 W.m
-2

) for Terra and Aqua respectively, 

with an overall R
2
 of 0.55 for both satellites. We note a greater scatter for latent heat flux than for the sensible 

heat flux (Figure 7), which can be explained by the fact that LE is here a residual term affected by errors in both 

estimated AE and H. Despite this moderate discrepancy, the good agreement between both approaches indicates 

that the methodology adopted in SPARSE for estimating H and AE using MODIS imagery is appropriate for 515 

modeling latent heat fluxes.  

 

Figure 8: Modelled Vs. Observed latent heat fluxes at Terra and Aqua time overpass 

6.4 Water stress 

The scattered values of the Stress Factor as shown in figure 9 are consistent with previous studies such as Boulet 520 

et al. (2015). SEB retrieval of stress is limited by the scale mismatch between the instantaneous estimate of the 

surface temperature during the satellite overpass (which can be influenced by high frequency turbulence) and the 

aggregated values of other forcing data which are derived from half hourly averages (Lagouarde et al., 2013; 

Lagouarde et al., 2015). However, general tendencies are well reproduced, with most points located within a 0.2 

confidence interval (illustrated by dotted lines along the 1:1 line) as found by Boulet et al. (2015) at plot scale, 525 

which is encouraging in a perspective of assimilating ET or SF in a water balance model for example. Moreover, 

it is noted that results include small LE and LEpot values having the same order of magnitude as the measurement 

uncertainty itself. Most outliers having greater water stress (~1) correspond to high evaporation from bare soil 

since the dominant land use in the study area is arboriculture, but also, this could be due to saturation of 
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scintillation which led to an underestimation of H XLAS measurements as pointed by Frehlich and Ochs (1990) 530 

and Kohsiek et al. (2002). 

 

Figure 9: Modelled Vs. XLAS derived stress index SF at Terra and Aqua time overpass 

 Modelled and observed stress index at Terra and Aqua time overpass show a consistent evolution with daily 

rainfall (Figure 10), although the modelled stress show a greater dispersion than the observed one. During a rainy 535 

episode (or an eventual irrigation period), the surface temperature decreases towards the unstressed surface 

temperature, thus marking an unstressed state, and SF tends to 0. Conversely, after a long dry down, the water 

stress appears and the surface temperature increases towards the equilibrium surface temperature computed by 

SPARSE under stressed conditions, and SF tends towards 1. Besides, it is noted that modelled stress indexes 

computed on the basis of Aqua MODIS’s LST are often greater than those computed used Terra MODIS’s LST 540 

due to higher LST (higher global solar radiation) at the time of Terra overpass (around midday). 
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a) 

 

 

b) 

 

 

Figure 10: Modelled and observed Stress index evolution at (a) Terra and (b) Aqua time overpass compared to daily 545 
rainfall  

6.5 XLAS and model derived daily latent heat fluxes 

Daily observed ET, i.e. LE_residual_XLASday-FP, was computed using the residual method; hence, six estimates 

of the daily observed ET were obtained by combining the two satellite passes data and three methods to compute 

G and thus AE (see Sect. 3.3). Only the residual method was used to estimate daily observed ET for two reasons; 550 

on the first hand, to reduce the computations approach since, already, three methods to compute AE have been 

tested and on the other hand, the application of the EF method was not possible because we do not dispose of 

spatialized measured potential evapotranspiration (only point potential evapotranspiration data at the Ben Salem 

meteorological station are available). From daily observed ET estimates, minimum and maximum ET were 

selected for each day and minimum and maximum daily ET time series were interpolated between successive 555 

days based on the self preservation of the ratio of the available energy (AE) to the global incoming radiation Rg 

as scale factor (Figure 11).  

In addition, three methods were used to compute SPARSE daily ET for the Terra and Aqua overpasses (see Sect. 

4.2), providing six estimates of the daily modelled ET. For each day average ET was plotted (260 days) with 
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error bars figuring minimum and maximum values, along with precipitation to understand the rainfall impact on 560 

the ET evolution (Figure 11).  

Despite the uncertainty in reconstructing the daily ET from instantaneous ET, overall results show a good 

agreement between XLAS derived and SPARSE derived ET values with similar seasonal dynamics. Daily 

observed and modelled ET over the whole study period were both in the range of 0-4 mm mm.day
-1

 which is 

consistent with the land use present in the XLAS path: mainly trees with a considerable fraction of bare soil. As 565 

expected, ET rates decrease significantly during dry periods (summers) and increase immediately after rainfall 

events. The rainfall peaks that occurred on 3
rd

 September 2013 (about 10mm), 6
th

 October 2013 (about 20 mm), 

15
th

 March 2014 (about 100 mm) and 22
nd

 April 2014 (about 25 mm) are followed by well-reproduced drydown 

(soil drying) events.  

At seasonal scale, we note a good agreement between modelled and observed daily ET for the 2013-2014 and 570 

2014-2015 seasons, especially when vegetation cover was more developed: from March to July 2014 and from 

March to Mai 2015; these periods correspond to cereals vegetation peak in some plots (March-April) and to 

market gardening crops (e.g. tomato, water melon, pepper…) cultivated generally from spring to the beginning 

of autumn in the interrow area of trees plots, which is a common farming practice in the Kairouan plain. 

However, the 2012-2013 season was dry compared with the two other ones, and less accurate results were 575 

obtained. Some points with little to null ET were recorded from May to July 2013 which can be explained by the 

very dry conditions and scattered vegetation cover with a considerable amount of bare soil. Lower ET values are 

generally recorder in autumn (October and November) which correspond to evapotranspiration from trees only, 

since the latest summer crops (market gardening crops) have been already harvested and the winter crops 

(mainly cereals) are not yet sown. 580 

Moreover, it can be seen that occasionally SPARSE model overestimated ET. As example, three dates can be 

selected in August 2013 (15
th

, 25
th

 and 29
th

 August 2013) for which modelled ET were 3.30 mm, 3.80 mm and 

2.80 mm while maximum observed ET were 2.0 mm, 2.40 mm and 1.20 mm, respectively; broader amplitude 

between modelled (4.00 mm) and observed ET (1.40 mm) was also recorded on the 18
th

 of May 2013. SPARSE 

also overestimates ET throughout ten days in August 2014 with an average difference of 1.1 mm and a 585 

maximum difference of 1.60 mm recorded in 23
rd

 August 2014. These discrepancies are always recorded under 

wet conditions (minimum stress factor) which show the difficulty in representing accurately the conditions close 

to the potential ET. This might be related to the theoretical limit of the model for low vegetation stress especially 

when coupled with low evaporation efficiencies (i.e. dry soil surface) as already reported by Boulet et al. (2015) 

for senescent vegetation. Average difference between SPARSE and XLAS derived LE estimates when both are 590 

available indicate that SPARSE can predict evapotranspiration with accuracies approaching 5% of that of the 

XLAS. 
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Figure 11: Modelled vs. observed daily latent heat fluxes. Light grey bars show gaps in XLAS data.  

7 Conclusions 595 

This study evaluated the performances of the SPARSE model forced by MODIS remote sensing products in an 

operational context (no model calibration) to estimate instantaneous and daily evapotranspiration. The validation 

protocol was based on an unprecedented dataset with an extra large aperture scintillometer. Indeed, up to our 

knowledge, this is the first work based on XLAS measurements acquired during more than 2 years, as compared 

to three months in previous works (Kohsiek et al., 2002;Moene et al., 2006). The estimates of the sensible heat 600 

flux derived from the SPARSE model are in close agreement with those obtained from the XLAS. These results 

indicate that the XLAS can be fruitfully used to validate large-scale sensible heat flux derived from remote 

sensing data (and residual latent heat flux), in particular for the results obtained at the satellite overpass time, 

providing a feasible alternative to local micrometeorological techniques for measuring the sensible heat flux and 

validating satellite-derived estimates (i.e. eddy correlation). Furthermore, the extrapolation from instantaneous to 605 

daily evapotranspiration is less obvious and three methods were tested based on the stress index, the evaporative 

fraction and the residual approach. The daily latent heat fluxes derived from the XLAS agreed rather well with 

those modelled using SPARSE model, which shows the potential of the SPARSE model in water consumption 

monitoring over heterogeneous landscape in semi-arid conditions, and especially to locate areas most affected by 

water stress. Even though overall results are encouraging, further work is needed to better valorize the XLAS 610 

dataset and improve results by i) being most efficient in the SPARSE model application using calibrated input 

data specific to our study area, especially input parameters to which the model is particularly sensitive such as 

the mean leaf width and the minimum stomatal resistance and ii) taking into account the heterogeneity of the 

1km MODIS pixel by applying MODIS footprint, which is determined by the sensor's observation geometry.  

Finally, in a future work, we plan to take advantage of the complementarities between the Soil Water Balance 615 

and Surface Energy Balance approaches (i.e. continuous but uncertain estimates using SWB due to poor soil 

water content control on one hand and sensitivity of SEB to the actual water stress on the other hand) to 
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implement an assimilation scheme of the remotely sensed surface temperature into SVAT models. In fact, in 

order to provide further information about distributed soil water status over the studied areas, the TIR-derived 

evapotranspiration products could be assimilated directly either in SVAT or hydrological models.  620 
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